
APPLICATIONS ON HIGH PERFORMANCE CLUSTER COMPUTERS
Production of Mars Panoramic Mosaic Images1

Tom Cwik, Gerhard Klimeck, Myche McAuley, Robert Deen and Eric DeJong
Jet Propulsion Laboratory

California Institute of Technology
Pasadena, CA 91109

1. INTRODUCTION

The development, application and commercialization of cluster computer systems have escalated dramatically over
the last several years. Driven by a range of applications that need relatively low-cost access to high performance
computing systems, cluster computers have reached worldwide acceptance and use. A cluster system consists of
commercial-off-the-shelf hardware coupled to (generally) open source software. These commodity personal
computers are interconnected through commodity network switches and protocols to produce scalable computing
systems usable in a wide range of applications. First developed by NASA Goddard Space Flight Center in the mid
1990s, the initial Caltech/JPL development resulted in the Gordon Bell Prize for price-per-performance using the
16-node machine Hyglac in 1997 [1]. Currently the JPL High Performance Computing Group uses and maintains
three generations of clusters including Hyglac. The available hardware resources include over 100 CPUs, over
80Gbytes of RAM, and over 600Gbytes of disk space. The individual machines are connected via 100Mbit/s and
2.0Gbit/s networks.

Though the resources are relatively large, the system cost-for-performance allows these machines to be treated as
‘mini-supercomputers’ by a relatively small group of users. Application codes are developed, optimized and put into
production on the local resources. Being a distributed memory computer system, existing sequential applications are
first parallelized while new applications are developed and debugged using a range of libraries and utilities. Indeed,
the cluster systems provide a unique and convenient starting point to using even larger institutional parallel
computing resources within JPL and NASA.

A wide range of applications has been developed over the span of three generations of cluster hardware. Initial work
concluded that the slower commodity networks used in a cluster computer (as compared to the high-performance
network of a non-commodity parallel computer) do not generally slow execution times in parallel applications [2]. It
was also seen that latency tolerant algorithms could be added to offset the slower networks in some of the less
efficient applications. What followed was the development or porting of a range of applications that utilized the
clusters' resources. End benefits include greatly reduced application execution time in many cases, and the
availability of large amounts of memory for larger problem sizes or greater fidelity in existing models. The
applications can be characterized into the following classes: a) Science data processing: these applications typically
exploit the available file systems and processors to speed data reduction; b) Physics-based modeling: these
applications typically use large amounts of memory and can stress the available network latency and bandwidth; and
c) Design environments: cluster computer resources can be integrated into larger software systems to enable fast
turnaround of specific design or simulation components that otherwise slow the design cycle.

The heavy use of clusters for a variety of applications requires the development of a cluster operation and
maintenance infrastructure. This includes the use of commercial or open source tools and libraries. Key components
involve the integration of message passing libraries (MPI) with a variety of compilers, queuing systems for effective
resource utilization, utilities to monitor the health of the machine and the use of networked file systems attached to
the cluster.

The rest of this paper describes the cluster machines used for a wide variety of applications, and then discusses a
image data processing application in more detail. Specifically, the process for creating Martian surface mosaic
images from a collection of individual images shot from a rover or lander camera will be discussed. The mosaic

1 This research was carried out at the Jet Propulsion Laboratory, California Institute of Technology under a contract
with the National Aeronautics and Space Administration.

production and image pair correlation software was ported to a commodity cluster computer system as a proof-of-
concept for near real-time processing of the downlink data. The application and algorithms, parallelization needed
for use with the cluster and performance gains in using the clusters described above will be briefly outlined.

2. COMPUTING ENVIRONMENT

Three generations of cluster machines have been assembled within the High performance Computing Group at JPL.
The first machine was built in 1997 and is named Hyglac. It consists of 16 Pentium-Pro 200MHz PCs, each with
128 Mbytes of RAM and it uses 100Base-T Ethernet for communications. Each node contains a 2.5 GB disk. The
nodes are interconnected by a 16-port Bay Networks 100Base-T Fast Ethernet switch. Nimrod, assembled in 1999,
consists of 32 Pentium-III 450MHz PCs, each with 512 Mbytes of RAM and it also uses 100BaseT Ethernet for
communications. An 8 GB disk is attached to each node. A 36 port 3-Com SuperStack II 100Base-T switch
interconnects the nodes. The third generation machine, assembled in 2001, is named Pluto and consists of 31
Pentium-III Dual-CPU 800MHz nodes (a total of 62 processors in all); each node has 2 GBytes of RAM. A 10 GB
disk is attached to each node. The nodes are interconnected by the new 32 port Myricom 2000 networking hardware,
capable of 240 Mbyte/s bi-directional bandwidth, and greatly reduced latency as compared to the 100Base-T Fast
Ethernet switches. One big advantage of these cluster computers is their upgradability. We have for example
increased the number of nodes on Pluto from the original 20 nodes to 32 nodes in the last half year.

All of the above clusters run the Linux operating system and use MPI for message passing within the applications. A
suite of compilers is available as well as math libraries and other associated software. Since the machines are not
used by a very large set of users, scheduling software has not been a priority. The Portable Batch System (PBS) for
queuing jobs is available on Pluto [3]. Besides the compute nodes listed for each machine, a front-end node is also
attached to the switch and consists of identical (Pluto) or faster CPU hardware as the compute nodes with larger
disks, an attached monitor, CD drive and other peripherals.

3. DATA PROCESSING: MAPPING MARS

The Mars Exploration Rovers (MER) to be launched in 2003 rely on detailed panoramic views for their operation.
This includes:

• Determination of exact location
• Navigation
• Science target identification
• Mapping

To prepare and test for MER operations, the Field Integrated Development and Operations (FIDO) rovers are being
used. These FIDO rover cameras gather individual image frames at a resolution of 480x640 pixels and are stitched
together into a larger mosaic. Before the images can be stitched they may have to be warped into the reference frame
of the final mosaic because the orientation and the individual images change from one to the next, and because
several final mosaics might be assembled from different viewpoints. The algorithm is such that for every pixel in the
desired final mosaic a good corresponding point must be found in one or more of the original rover camera image
frames. This process depends strongly on a good camera model.

A sequence of software operates within a data pipeline to produce a range of products – both for science
visualization and in a mission operations environment. The original image stereo pairs captured by the rover
cameras are sent to the data processing center and placed into a database. The image pairs are then sent through the
pipeline producing the image products. It was recognized that two key software components that slow the data cycle
are the production of a mosaic from a large number of camera image frames, and the process of correlating pixels
between an image stereo pair. The following sections summarize the results for these two algorithms; additional
results for the mosaic software can be found in [4] along with results for a wide range of applications executing on
cluster machines.

1

10

100

1 10

450 MHz Orig
450 MHz
800 MHz
800 MHz local data
Ideal

T
im

e
(m

in
ut

es
)

CPU (log scale)

90min original

5min

48min

28min

Algorithm
Changes
CPU
Speed-up

2.5min

1.7min
Achieved a 36x and 52x speed-up

Figure 2: Timing examples for the assembly of 123 individual
images into a single mosaic for two different clusters.
Differences between the "800 MHz" and "800 MHz local
data" indicate changes in how the input images are read from
disk (see text).

3.1 MOSAIC PRODUCTION FROM SETS OF IMAGES

The original algorithm executes in about 90 minutes, calculating a complete mosaic from 123 images on a 450MHz
Pentium III PC running Linux. It was desired to reduce this processing time by at least an order of magnitude. Initial
algorithmic changes to the original software were first performed. Using MPI the modified mosaic software was
parallelized and run on the clusters. The processing time was reduced to a range of 1.5 to 6 minutes depending on
the specific image set and the processor speed used in the cluster. The images shown in Figure 1 were taken from a
FIDO Rover field test in the beginning of May, 2001. The mosaic generation for this particular image (note that only
about 1/4 of it is shown) took 3.3 minutes on 16 CPUs of a Nimrod-like cluster of 16 CPUs.

The original mosaic algorithm was written for machines that have a limited amount of RAM available, thus
restricting the number of individual images that can be kept in memory during the mosaic process. With about 256
MB on a CPU one can safely read in all of the roughly 130 images and keep resident in RAM a copy of the final
mosaic. The algorithm was changed to enable
this with the aid of dynamic memory allocation.
The original algorithm took about 90 minutes
on a single 450MHz Pentium III CPU to
compose 123 images into a single mosaic. The
above algorithm changes as well as others
result in a reduction of the required CPU time
to about 48 minutes. Running the same
algorithm and problem on an 800MHz CPU
results in a time reduction to about 28 minutes
(Figure 2).

To exploit the parallelism available on a
cluster, the parallel mosaic algorithm divides
the targeted mosaic into N slices, where N is
the number of CPUs (indicated by the
horizontal lines in Figure 1). Once each CPU
has completed its tasks, it reports the image
slice to the manager CPU, which then patches
the slices together into one image and saves it
to disk. Results of the parallelization of the
mosaic algorithm is shown for the 800MHz
cluster and for the 450MHz cluster in Figure 2.
The dot-dashed line shows the ideal speed-up.

Figure 1: Mosaic generation from individual image frames. The horizontal
lines in the panorama (lower image) indicate the strips of the image
distributed to the cluster processors.

The actual timings follow a linear scaling with deviations from the ideal attributed to load balancing problems and
data staging problems. The 800 MHz curve extends to a larger number of CPUs since the 800 MHz cluster has twice
as many CPUs available.

Figure 3 plots execution time broken into problem set-up,
reading of the data, image processing, communication
between CPUs and writing data to disk for two different
clusters (450MHz and 800MHz). It is seen that most of the
time is spent on the actual image processing. What is also
noted is that different CPUs work on the problem for
differing amounts of time. One solution to the load-
balancing problem is a more careful analysis of the image
data staging in the search algorithm portion of the
processing. An approach that is more independent of the
image sequencing and data staging can be a master-slave
approach, where the work is dished out to the worker CPUs
in smaller chunks in an asynchronous fashion. As some
CPU's finish their chunk before others, they can start
working on the next chunk. It is interesting to note that the
load-balancing problem is, relatively speaking, smaller for
the faster CPUs as compared to the slower CPUs. The
apparently large communication cost on CPU 0 includes
idle time waiting for data from CPUs 6 and 7.

The parallel algorithm deteriorates strongly starting at 24
CPUs. This can be attributed to data staging problems to all
the CPUs. If the images are copied to the local disks on
each node of the cluster (rather than residing on the front-
end disk) the overall performance is significantly improved
(crosses in Figure 2). The total processing time is reduced
from 2.5 to 1.7 minutes. This comes at the expense of about
7 minutes to copy the data to the local disks via the UNIX
rcp process, though in an operational setting a different
strategy for data staging may be available. This implies that
if the algorithm is to be run on that many CPUs a different
method and/or hardware must be found to move data to the
local disks.

Figure 4 shows data for the time spent in the set-up, the
initial file reading, image processing, communication and
final image writing for each individual CPU of Pluto. With
39 CPUs, only about 1.5 minutes is spent on the actual
image processing. The remaining 0.8 minutes are mostly
spent on set-up and reading of the original images. The
reading of all the input images by all the CPUs from the
front-end disk leads to a dramatic bottleneck in the overall
computation.

The heavy disk load on the front-end can be reduced by copying all the images from the front-end machine's single
disk to the local /tmp disks of the computation nodes. Figure 4 (bottom) shows the virtual elimination of the
previously significant read time. Interestingly, we have also significantly reduced the time declared as set-up. We
believe that this is due to the fact that during the set-up time all the input files are probed for their individual size and
coordinates, which are needed to define the size of the final mosaic. This double access to the images became
apparent to us in the analysis of this data. Additional improvements to the algorithm to only read a file and/or its
header once are clearly possible. The copying of all the individual images to the local disks comes with a significant
price in performance: an rcp shell command takes about 7 minutes to execute. Clearly that is not an efficient

0

2

4

6

8

10

0 1 2 3 4 5 6 7

Setup
Read
Image
Comm/Write

T
im

e
(m

in
ut

es
)

CPU

0

1

2

3

4

5

6

0 1 2 3 4 5 6 7

Setup
Read
Image
Comm
Write

T
im

e
(M

in
ut

es
)

CPU

800 MHz, 6.25 minutes total

450 MHz, 10.5 minutes total

Figure 3: Timing analysis for runs on 8 CPUs on
the 450MHz and 800MHz clusters. Times for set-
up, image reading, image processing,
communication and final image writing are shown.

solution. Possibly faster I/O hardware such as a RAID
disk or a parallel file system might be solutions to this
problem.

Looking at the final performance data with the local data
one can see again a load-balancing problem. However,
squeezing out the last 10-20% performance by balancing
this load and reducing the total time from 1.5 minutes to
perhaps 1.3 minutes may prove to be laborious and not
necessary as the platform this code will be run on during
the Mars Exploration Rover mission is not completely
defined at this time.

3.2 CORRELATION OF STEREO-PAIR IMAGES

A second step in the data processing pipeline that
exhibited strong opportunities for parallelism is the
algorithm for correlating stereo-pair images. This
algorithm takes a pair of images from the rover stereo
cameras and attempts to correlate pixels in the left and
right images. The correlation is necessary for calculation
of range and terrain maps. (Figure 5 shows a
representative pair of images used in the FIDO tests.) The
algorithm starts from a pre-defined seed point defining a
pixel in the left image, and attempts to correlate this pixel
and a set of surrounding pixels with those in the right
image. A camera model that gives information relating
the geometry of the two cameras is used to find the
starting location in the right image given a pixel in the
left image. Starting at the seed point the correlation
process spirals outward until new pixels can no longer be
correlated with each other. The algorithm then begins

anew with a different seed point and continues attempting to correlate pixels that have not been previously
processed. In between the main correlation stages, a pass is made along the areas not previously correlated to
complete the correlation in those sections of the image pair. This stage is referred to as filling the gores in the image.
Generally not all pixels can be correlated, due to the different view angles of the two cameras. For example in
Figure 5 the left eye sees an area of ground between the lower ramp and the left of the rover that the right eye does

0

0.5

1

1.5

2

2.5

T
im

e
(m

in
ut

es
)

800 MHz, 39 CPU, central data, 2.4 minutes total

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38
CPU

0

0.5

1

1.5

2

2.5

Comm
Write
Setup
Read
Image

T
im

e
(m

in
ut

es
)

800 MHz, 39 CPU, local data, 1.5 minutes total

Figure 4: Timing analysis on 39 CPUs running at
800MHz. Top: images are all stored on the front
end. Bottom: input images are distributed to local
/tmp disks before the processing.

Figure 5. Left and right stereo pair used in correlation example. In this example the lines indicate subframes of
the workload for the left image distributed to 12 processors of the cluster.

Figure 6. Scalability of stereo-pair correlation algorithm on cluster
Pluto. Axis on left indicates execution time for the correlation algorithm
while axis on right indicates the total number of pixels correlated in the
image pair.

not see at all.
To exploit the parallelism available on a cluster, the stereo-pair images were divided into subframes depending on
the number of processors in use. Figure 5 shows a decomposition for 12 processors–in general the decomposition
results in anywhere from equal numbers of column and row subframes to a ratio of 3:1 (columns:rows) subframes
for some numbers of processors. E.g., a ratio of 12:4 for 48 processors in use. Though each processor holds the
complete pair of images, it is the computational work in the left image that is divided among the processors as
indicated by the subframes shown in the left image of Figure 5. For each subframe of the left image in a processor, a
seed point is generated for the left frame and the algorithm for correlating pixels between images begins. Since the
pixel in the left frame can generally correlate to a pixel located anywhere in the right frame the whole right image is
available to to the correlation algorithm. Search window size and correlation window size are input parameters to
the correlator. The location of a seed point is chosen randomly in each subframe with the number of seed point
passes in the algorithm a variable at runtime. Because the seed point and the sequence of operations in the parallel
correlation algorithm is different than those in the sequential algorithm, it is expected that both the number of pixels
correlated as well as the quality of
correlation in the images will be
differ slightly depending on the
number of processors in use.

Figure 6 is a plot of the scalability
and number of pixels correlated for
the correlation algorithm executing
on Pluto. The timing at one
processor indicates the original
algorithm and seed points on one
processor of the cluster, while the
additional points show the timing
and number of points correlated for
the parallel algorithm and random
seed point generator. The overall
execution time was reduced from
over 38 minutes on 1 processor to
1.6 minutes on 36 processors. The
number of pixels considered
correlated varied slightly as the
number of processors in use was
increased but stayed within 5% of
the number correlated in the original
sequential algorithm. This number
could be increased slightly by
increasing the number of seed point
passes in the algorithm. The quality
and number of pixels correlated in
the images by the parallel algorithm
as referenced to the original sequential algorithm is currently being examined.

Figure 7 is a plot of the timing and number of pixels correlated per processor for 36 processors on Pluto. The
timings are broken into the main and gore portions of the algorithm as described above. The number of pixels
correlated as well as the time per processor is seen to vary across the processors. It is clear that a refined version of
the parallel algorithm can be developed that balances the workload across processors. As in the mosaic generation
algorithm, it is unclear if the savings of less than a minute of execution time is necessary until further requirements
are defined.

Figure 8 shows an overlay of the left camera image shown in Figure 5 with a raster of 36 subdivisions corresponding
to the data in Figure 7. The yellow colors correspond to the original image, the blue overlay indicates a "successful"
correlation as returned by the serial code. Almost all the area of the image that is worked on by CPUs 31 through 36
is not even seen in the right image. That is why a load balance problem is evident in Figure 7. It is also interesting

to note that the segment indicated by CPU 34 does show "successful" correlation on the ramp, which is not even
shown in the right image. We are currently implementing a left-right and right-left correlation verification algorithm
that will eliminate such dramatic errors [5].

Figure 7. Timing and number of pixels correlated per processor for 36 processors of Pluto. The timing is broken
into the main and ‘gore’ portion of the algorithms as described in the text. All other portions of the code result in
less than a second of execution time. The number of pixels correlated on each processor is indicated on the right
axis.

Figure 8. Similar to Figure 5. Left image is subdivided into 36 CPU work loads. Blue overlay is the result of the
serial code correlation mask which indicates successfully correlated pixels.

4. CONCLUSION

This paper has summarized the use and performance of cluster computers for processing of stereo-pair camera
images to produce science data products and images used for mission operations. The mosaic production software
and the correlation software was ported to the cluster computer environment and executed for representative images
used in recent field tests to determine performance and fidelity of processing. Due to the inherent parallelism of the
algorithms, the reduction of processing time is large. The mosaic production was reduced from about 28 minutes to
under 2 minutes using the cluster while the correlation algorithm was reduced from 38 minutes to under 2 minutes.
The final mosaic image produced is identical in the original sequential and parallel environment, while the
correlations produced in the two environments differ slightly due to variations in the processing order inherent in the
parallel algorithm. These differences are currently being examined and will be quantified [5].

5. ACKNOWLEDGMENTS

The TMOD technology program under the Beowulf Application and Networking Environment (BANE) task
sponsored the Mars imaging work. The original VICAR based software is maintained in the Multi-mission Image
Processing Laboratory (MIPL).

6. REFERENCES

[1] Michael S. Warren, John K. Salmon, Donald J. Becker, M. Patrick Goda, Thomas Sterling, Gregoire S.
Winckelmans, Pentium Pro Inside: I. A Treecode at 430 Gigaflops on ASCI Red, II. Price/Performance of
$50/Mflop on Loki and Hyglac, SC97 Conference Proceedings, 1997.

[2] D. S. Katz, T. Cwik, B. H. Kwan, J. Z. Lou, P. L. Springer, T. L. Sterling and P. Wang, “An Assessment of a
Beowulf System for a Wide Class of Analysis and Design Software,” Advances in Engineering Softw, vol. 29, pp.
451-461, 1998.

[3] http://www.OpenPbs.org/.

[4] Tom Cwik, Gerhard Klimeck, Myche McAuley, Charles Norton, Thomas Sterling, Frank Villegas and Ping
Wang, The Use Of Cluster Computer Systems For NASA/JPL Applications, AIAA Space 2001 Conference and
Exposition, Albuquerque, New Mexico, 28 - 30 Aug 2001.

[5] http://www-hpc.jpl.nasa.gov/PEP/gekco/mars , Parallel Algorithms for Near-Realtime Visualization, Gerhard
Klimeck.

